Significant Risk Reduction in the Exploration for Anomalously Pressured Gas Assets in Rocky Mountain Laramide Basins

Ronald C. Surdam, Innovative Discovery Technologies, LLC

Critical Attributes

- Typically anomalously pressured (both over- and underpressured), but can appear to be normally pressured.
- Compartmentalized and gas-charged.
- Occur beneath a regional velocity inversion surface.
- No meteoric water connection.

1995 Tomogram vs. Pre-Injection Log at 1068 Velocity decrease caused by CO₂ injection 3000 -12 14 16 18 20 22 from Lazaratos and Marion, 1997 Velocity (kft/s)

from Timur, 1987

m/s 200

> -200 -400

-600 -800

-1000

-1200 -1400 -1600

-1800 -2000

-2200

Echo 2-D seismic database for Wind River Basin.

Anomalous Velocity Model, Wind River Basin From 2-D Seismic Data, View to South

Anomalous Velocity Model, Wind River Basin Top of Anomaly, View to South

Anomalous Velocity Model, Wind River Basin Upper Fort Union, View to South

Anomalous Velocity Model, Wind River Basin Lower Fort Union, View to South

Anomalous Velocity Model, Wind River Basin Lance, View to South

Anomalous Velocity Model, Wind River Basin Meeteetse, View to South

Anomalous Velocity Model, Wind River Basin Mesaverde, View to South

Validity of the Techniques

- Construction of cross sections through the anomalous velocity volume coincident with 12 known gas fields producing from the lower Fort Union/Lance section in the Wind River Basin, Wyoming.
- Without exception each known gas field is associated with a significant and intense anomalously slow velocity domain (6 examples are illustrated).

Madden Field Velocity Anomaly S N **Top of Lower Fort Union Bottom of Lance** 1 mile

Frenchie Draw Field Velocity Anomaly

1 mile

Dinty Moore Field Velocity Anomaly

Squaw Butte Field Velocity Anomaly

Kanson Draw Field Velocity Anomaly

Pavillion Field Velocity Anomaly

SweetSpot Delineation

For optimum exploration/exploitation risk reduction it is important to determine where reservoir intervals with enhanced storage/deliverability intersect gas-charged domains.

Prospect Delineation/Evaluation Strategy

IDT Strategy for eliminating the most significant obstacles to grossly increasing the rate and magnitude of converting anomalously pressured "basin-center" gas resources to energy reserves. The objective of the IDT strategy is to determine where reservoir sandstones intersect and penetrate gas-rich domains within "basin-center" configurations.

Frequency/Lithologic/Anomalous Velocity Overlap at the Frenchie Draw Field

Acknowledgements

We gratefully acknowledge the support provided for this work by the Department of Energy (DE-FC26-01NT41325) and Gary Covatch, the DOE Project Manager.

Echo Geophysical assisted us with data acquisition.

Lastly we acknowledge the long term encouragement provided to us by the energy industry.